Investigación Preclínica

Molecular Imaging Probes

Molecular imaging takes advantage of the traditional diagnostic imaging techniques and introduces molecular imaging probes to determine the expression of indicative molecular markers at different stages of diseases and disorders. Molecular imaging probe is an agent used to visualize, characterize and quantify biological processes in living systems.


Schizophrenia is a chronic neuropsychiatric disorder that affects approximately 1% of the population worldwide. It is the most common chronic mental illness, representing the major economic burden on the health sector. Therefore, in recent decades, various international and national organizations have shown great concern over the impact on morbidity and quality of life. Currently, we are investigating different therapeutic strategies in the prevention of the onset of schizophrenia.


Cancer is one of the principal leading causes of death worldwide, and thus it is one of the most studied diseases. Nuclear imaging modalities (positron emission tomography (PET) and single photon emission computed tomography (SPECT)) combined with computed tomography (CT) or magnetic resonance imaging (MRI) are the most commonly used techniques to retrieve non-invasively anatomical and functional information of tumors.

Infection and Inflammation

Early detection of unknown inflammation and nosocomial infection processes is crucial nowadays for patient’s survival. In this respect, clinical practice is taken profit of molecular imaging technologies to diagnose these pathologies in early stages. But in many cases correlation between imaging findings and patient evolution is still undetermined. Animal models are indispensable for the study of key issues in disease pathophysiology, for testing promising new treatments and also for find imaging markers of disease progression.

Quantitative Microscopy

Light microscopy employs visible light to image objects of microscopic dimensions and it is probably the most used research tool in biology.  Microscopy has historically been an observational technique. In recent years, however, the development of automated microscopes, digital sensing technologies and novel labeling probes have turned microscopy into a predominantly quantitative technique.


Cardiovascular diseases remain the major cause of death in the developed world. The costs generated in economic, social and human terms are immense. This has led us to propose this line to further understand the biology and basic mechanisms underlying cardiovascular diseases, identify potential novel targets, apply the information and concepts available in clinical studies of patients and, develop other biotechnological novel applications to prevent them.