Bio
Beatriz Salinas Rodríguez received her MSc in Chemistry in 2009 from the Universidad de Salamanca, Spain, where she worked on the design of layered double hydroxide monohybrids for drug delivery. In 2009 she received a 4 years fellowship from the Spanish Government to start her PhD at the Universidad Complutense de Madrid (UCM) and Centro Nacional de Investigaciones Cardiovasculares (CNIC), Spain. In 2013 she obtained her PhD degree on the synthesis and covalent functionalization of superparamagnetic nanoparticles for biomedical imaging. After that, she joined Memorial Sloan Kettering Cancer Center (New York, USA, 2013-2015) as a postdoctoral research fellow, where she focused her studies in the design of new PET and SPECT tracers for glioblastoma imaging.
In January 2016 he joined the Biomedical Imaging and Instrumentation Group at the Gregorio Marañón Hospital (Madrid, Spain), where he leads the "Molecular Probes" Laboratory, whose main line of research is the design and development of new molecular tracers and probes for nuclear and optical imaging
Teaching
Bachelor in Biomedical Engineering, Universidad Carlos III de Madrid:
- Introduction to Biomedical Engineering (2016-Today)
- Biomedical applications of nanotechnology (2017-Today)
Master en Terapias Avanzadas, Universidad Francisco Vitoria
- Casos prácticos: del laboratorio a la clínica (2017-Today)
Master in laboratory animal science and welfare, Universidad Autonoma de Barcelona
- Imaging techniques; Positron Emission Tomography (2017- Today)
Master Física Médica, UNED
- Síntesis de radiofármacos (módulo de prácticas) 2018- Today
Máster Universitario en Investigación en Medicina Traslacional, Universidad Complutense de Madrid
-“Tecnologías Ómicas y Bioinformática”
Selected Publications
[1] A. Santos Coquillat, M.I. Gonzalez, A. Clemente Moragón; M Gonzalez-Arjona; V Albaladejo; Héctor Peinado; Javier Muñoz; Pilar XImenez Embún; Borja Ibañez; Eduardo Oliver; Manuel Desco Menéndez; B. Salinas. 2021. “Goat milk exosomes as natural nanoparticles for detecting inflammatory processes by optical imaging”. Small. Wiley -VCH. https://doi.org/10.1002/smll.202105421.
[2] L.Gomez-Gil; M.L.Lopez-Donaire; D.Velasco; V. Martin; M.I. Gonzalez; B.Salinas; L.Cussó; A. García; S.B.Bravo; Fernandez Santos; C.Elvira; E.Arroba; J.Sierra; R.Bañares; L.Grigorian-shamagian; Fernandez Avilés. 2021. “Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles”. International Journal of Molecular Sciences. MDPI. 22-17, pp.9226. https://doi.org/10.3390/ijms22179226.
[3] M.I. Gonzalez; M. Gonzalez; J. Vaquero; E. Vázquez-Ogando; A. de Molina; H. Peinado; M. Desco; B. Salinas. 2021. “Covalently labeled fluorescent exosomes for in vitro and in vivo applications Biomedicines.” MPDI. 9-1, pp.81. https://doi.org/10.3390/biomedicines9010081.
[4] A. Lamas-Paz; L. Moran; J. Peng; et al; B. Salinas; F.J. Cubero. 2020. Intestinal Epithelial Cell-Derived Extracellular Vesicles Modulate Hepatic Injury via the Gut-Liver Axis During Acute Alcohol Injury Frontiers in pharmacology. Frontiers. 11. https://doi.org/10.3389/fphar.2020.603771.
[5] M.I. González; P. Martín-Duque; M. Desco; B. Salinas. 2020. Radioactive Labeling of Milk-Derived Exosomes with 99mTc and In Vivo Tracking by SPECT Imaging Nanomaterials. MDPI. 10-6. https://doi.org/10.3390/nano10061062.
[6] J. Martinez Milla, C. Galán Arriola, M. Carnero, J Cobiella, D Perez-Camargo, V Bautista, M Rigol, N Solanes, R Villena Gutierrez, M Lobo, J Matéos, J P. l Vilchez Tschischke, B. Salinas, L Cussó, G Lopez, V Fuster, M Desco, J Sánchez-Martinez, B Ibañez. 2020. “Translational large animal model of hibernating myocardium: characterization by serial multimodal imaging” Basic Research in Cardiology. Springer. https://doi.org/10.1007/s00395-020-0788-0.
[7] B. Salinas; M. Guembe; L. Cussó; M. Kestler; J Guinea; M. Desco; P. Muñoz; E. Bouza. 2019. “Assessment of the Anti-Biofilm Effect of Micafungin in an Animal Model of Catheter-Related Candidemia” Medical Mycology. Oxford academic. ISSN 1369-3786. https://doi.org/10.1093/MMY/MYY065.
[8] S. Jannetti, G. Carlucci, B. Carney, S. Kossatz, L. Shenker, L. Carter, B. Salinas, C. Brand, A. Sadique, M. Gönen, V. Ponomarev, B. Zeglis, J. Lewis, W.A. Weber, J. Humm, T. Reiner. 2018. PARP1-Targeted Radiotherapy in mouse models of glioblastoma. Journal of Nuclear Medicine. 59(8):1225-123, https://doi.org/10.2967/jnumed.117.205054.
[9] S Peña Zalbidea, A. Huang, H. Kavunja, B. Salinas, M. Desco, C Drake, P Woodruff; J. J. Vaquero, B Swarts. 2018. “Chemoenzymatic radiosynthesis of 2-deoxy-2-[18F]fluoro-d-trehalose ([18F]-2-FDTre): A PET radioprobe for in vivo tracing of trehalose metabolism”. Carbohydrate Research. 472, pp. 16 - 22.
[10] A Burillo; A. Galar-López; P. Escribano; A. Galar; B. Salinas; N. Díaz-Perez; P. Muñoz; E. Bouza. A new cause of false positive voriconazole levels: watch your collection tubes!. 2018. Journal of Chromatography B. 1092, pp. 328 - 331. Elsevier,. ISSN 1570-0232[9] B. Salinas, J. Ruiz-Cabello, A. V. Lechuga-Vieco, M. Benito-Vicente, F Herranz. 2015. “Surface-Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque”. Chemistry. A european journal. 21 - 29, pp. 10450 - 10456. https://doi.org/10.1002/chem.201500458.
[11] B. Carney* G. Carlucci*, B. Salinas, V. Di Giallonardo, S. Kossatz; A. Vansteene; V. Longo; A. Bolaender; G. Chiosis; K.A Keshari; W. A. Weber; T Reiner. 2016. “Non-invasive PET Imaging of PARP1 Expression in Glioblastoma Models”. Molecular Imaging and Biology. 18 - 3, pp. 386 - 392.. :10.1007/s11307-015-0904-y.
[12] B. Salinas; Christopher. P Irwin; S. Kossatz; A. Bolaender; G. Chiosis; N. Pillarsetty; W. A Weber; T Reiner. 2015 “Radioiodinated PARP1 tracers for glioblastoma imaging”. European Journal of Nuclear Imaging and Molecular Imaging research. 5 - 46, pp. 123.
[13] B. Salinas, J. Ruiz-Cabello, A. V. Lechuga-Vieco, M. Benito-Vicente, F Herranz. 2015. “Surface-Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque”. Chemistry. A european journal. 21 - 29, pp. 10450 - 10456. https://doi.org/10.1002/chem.201500458.
[14] C. Irwin, Y. Portorreal , C. Brand, Y. Zhang, P. Desai, B. Salinas, W:A. Weber WA; T Reiner. 2014. “PARPi-FL a fluorescent PARP1 inhibitor for glioblastoma imaging” Neoplasia. Elsevier. 16-5, pp.432-440. ISSN 1522-8002. WOS (30) https://doi.org/10.1016/J.NEO.2014.05.005.
[15] F. Herranz F; B. Salinas. H. Groult,J. Pellico, AV Lechuga, R. Bhavesh, J. Ruiz-Cabello.2014. Superparamagnetic nanoparticles for atherosclerosis imaging. Nanomaterials. 4-2, pp.408-438. https://doi.org/10.3390/nano4020408.
[16] F Herranz, E Almarza, I. Rodríguez, B Salinas, Y. Rosell, M. Desco, J.W. Bulte, J. Ruiz-Cabello. 2013. Nanoparicles for gene therapy and magnetic resonance imaging. Microscopy Research and Technique. 74-7, pp 577-791. doi: 10.1002/jemt.20992.
[17] M.S. San Roman, M.J. Holgado, B. Salinas, V. Rives. 2013. “Drug release from layered double hydroxides and from their polylactic acid (PLA) nanocomposites”. Applied Clay Science. 71, pp.1-7. https://doi.org/10.1016/j.clay.2012.10.014.
[18] M.S. San, M. J. Holgado, B. Salinas, V. Rives. 2012. “Characterization of Diclofenac, Ketoprofen or Chloranphenicol succinate encapsulated in layered double hydroxides with the hydrotalcite-type”. Applied Clay Science. 55, pp.158-163. https://doi.org/10.1016/j.clay.2011.11.010.
[19] B. Salinas, J. Ruiz-Cabello, M. P. Morales, F. Herranz. 2012. “Olefin metathesis for the functionalization of superparamagnetic nanoparticles.” Bioinspire, Biomimetic and Nanobiomaterials. 1 - 3, pp. 166 - 172.
Instituto de Investigación Sanitaria Gregorio Marañón
C/ Ibiza 43. Anexo Psiquiatría 1ª planta
28009 Madrid
+34 91 426 5067 Ext 17
Languages